Python图像局部特征提取
丝瓜网小编提示,记得把"Python图像局部特征提取"分享给大家!
图像特征可以包括颜色特征、纹理特征、形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰。图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。
图像局部特征描述的核心问题是不变性(鲁棒性)和可区分性。由于使用局部图像特征描述子的时候,通常是为了鲁棒地处理各种图像变换的情况。因此,在构建/设计特征描述子的时候,不变性问题就是首先需要考虑的问题。在宽基线匹配中,需要考虑特征描述子对于视角变化的不变性、对尺度变化的不变性、对旋转变化的不变性等;在形状识别和物体检索中,需要考虑特征描述子对形状的不变性。
局部特征点是图像特征的局部表达,它只能反应图像上具有的局部特殊性,所以它只适合于对图像进行匹配,检索等应用。对于图像理解则不太适合。而后者更关心一些全局特征,如颜色分布,纹理特征,主要物体的形状等。全局特征容易受到环境的干扰,光照,旋转,噪声等不利因素都会影响全局特征。相比而言,局部特征点,往往对应着图像中的一些线条交叉,明暗变化的结构中,受到的干扰也少。
对于局部特征的检测,通常使用局部图像描述子来进行。
斑点与角点是两类局部特征点。斑点通常是指与周围有着颜色和灰度差别的区域,如草原上的一棵树或一栋房子。它是一个区域,所以它比角点的抗噪能力要强,稳定性要好。而角点则是图像中物体的拐角或者线条之间的交叉部分。
斑点检测原理与举例
LoG与DoH
斑点检测的方法主要包括利用高斯拉普拉斯算子检测的方法(LOG)"以及利用像素点Hessian矩阵(二阶微分)及其行列式值的方法(DOH)。